

Benefits of SE(3)-equivariance in Robot Learning

• Data-efficient (Only 5~10 demonstrations are enough)

g: Gripper

Pose

 O_{s}

• Generalizable (Previously unseen poses, instances, distractors)

Theory: Bi-equivariant Diffusion Process on SE(3)

$$P_t(g_t|O_s, O_e) = \int dg_0 P_{t|0}(g_t|g_0, O_s, O_e) P_0(g_0|O_s, O_e)$$

 $P_{t|0}(g_t|g_0, O_s, O_e)$: Diffusion Kernel $g_t \in SE(3)$: Diffused Pose $P_t(g_t|O_s, O_e)$: Noised Marginal Distribution $g_0 \in SE(3)$: Target Pose $P_0(g_0|O_s, O_e)$: Target Distribution

Bi-equivariance

Bi-equivariance of Probability Distribution Function (PDF) on SE(3)

 $P(g|O_s, O_e) = P(\Delta g \ g|\Delta g \cdot O_s, O_e) = P(g \ \Delta g^{-1}|O_s, \Delta g \cdot O_e)$ $\forall g, \Delta g \in SE(3)$

Core Equation: Bi-equivariance of SE(3) Score Functions

If $P(g|O_s, O_e)$ is bi-equivariant, the following hold for $s(g|O_s, O_e) = \nabla_{SE(3)} \log P(g|O_s, O_e)$

1. Left Invariance: $s(\Delta g \ g | \Delta g \cdot O_s, O_e) = s(g | O_s, O_e)$

2. Right Equivariance: $\mathbf{s}(g \Delta g^{-1} | O_s, \Delta g \cdot O_e) = [\operatorname{Ad}_{\Delta g}]^{-T} \mathbf{s}(g | O_s, O_e)$

 $Ad_g^{-T} = \begin{bmatrix} R & \emptyset \\ [p]^{\wedge}R & R \end{bmatrix}$ $s(g|O_s, O_e) = \nabla_{SE(3)} \log P(g|O_s, O_e)$: Score Function of P $abla = ig(
abla_{\mathbb{R}^3},
abla_{SO(3)}ig)$ $[\mathbf{p}]^{\wedge} = \begin{bmatrix} 0 & -p_3 \\ p_3 & 0 \end{bmatrix}$ $p_2 \\ -p_1$ $\nabla_G = (\mathcal{L}_1, \mathcal{L}_2, \cdots, \mathcal{L}_{\dim(G)})$: Lie-derivatives of group G \mathcal{L}_i : Lie-derivative along *i*-th Lie algebra of G

Diffusion-EDFs: Bi-equivariant Denoising Generative Modeling on SE(3) for Visual Robotic Manipulation

Massachusetts Hyunwoo Ryu¹, Jiwoo Kim¹, Hyunseok An¹, Junwoo Chang¹, Joohwan Seo², Taehan Kim³, Yubin Kim⁴, Chaewon Hwang¹, Jongeun Choi^{1,2}, Roberto Horowitz² ¹Yonsei University, ²University of California, Berkeley, ³Samsung Research, ⁴Massachusetts Institute of Technology

Simulation Benchmark Results

Scenario	Method	Without Pretraining	Without Obj. Seg.	Without Rot. Aug.	Pick	Mug Place	Total	Pick	Bottle Place
Default (Trained Setup)	R-NDFs [68]	×	×		0.83	0.97	0.81	0.91	0.73
	SE(3)-DiffusionFields [75]		×	×	0.00	(n/a)	(n/a)	0.00	(n/a)
		\checkmark	\checkmark	$\boldsymbol{\times}$	0.11	(n/a)	(n/a)	0.01	(n/a)
	Diffusion-EDFs (Ours)	\checkmark	\checkmark	\checkmark	0.99	0.96	0.95	0.97	0.85
Previously Unseen Instances	R-NDFs [68]	××	×	$\langle \langle \langle$	0.73 0.00	$0.70 \\ 0.00$	0.51 0.00	0.90 0.00	$0.87 \\ 0.00$
	SE(3)-DiffusionFields [75]		×	××	0.55 0.14	(n/a) (n/a)	(n/a) (n/a)	0.57 0.00	(n/a) (n/a)
	Diffusion-EDFs (Ours)	\sim	\checkmark	\checkmark	0.96	0.96	0.92	0.99	0.91
Previously Unseen Poses	R-NDFs [68]	\times	\times	\checkmark	0.84	0.93	0.78	0.65	0.72
		\times		\checkmark	0.00	0.00	0.00	0.00	0.00
	SE(3)-DiffusionFields [75]		\checkmark	××	0.75 0.00	(n/a) (n/a)	(n/a) (n/a)	0.47 0.04	(n/a) (n/a)
	Diffusion-EDFs (Ours)	 ✓ 	\checkmark	\checkmark	0.98	0.98	0.96	0.98	0.81
Previously Unseen Clutters [§]	R-NDFs [68]	\times	\checkmark	\checkmark	0.00	0.00	0.00	0.00	0.00
	SE(3)-DiffusionFields [75]	\checkmark	\checkmark	×	0.06	(n/a)	(n/a)	0.03	(n/a)
	Diffusion-EDFs (Ours)	\checkmark	\checkmark	\checkmark	0.91	1.00	0.91	0.96	0.91
Previously Unseen Instances, Poses.	R-NDFs [68]	××	×		$0.71^{\$}$	$0.75^{\$}$	0.53 [§]	$0.85^{\$}$	$0.84^{\$}$
	SE(3)-DiffusionFields [75]		×	×	0.58 [§]	(n/a)	(n/a)	0.59 [§]	(n/a)
& Clutters [§]	Diffusion-EDFs (Ours)		······································	\sim	0.05	0.89	0.79	0.00	0.89

[§]Models with segmented inputs are tested without cluttered objects to guarantee perfect object segmentation.

Real Robot Experiments

We evaluate Diffusion-EDFs on three real-world scenarios:

- Picking a mug and placing on a hanger.
- 2. Picking up bowls and placing on the dish with the matching color, in red-green-blue order.
- Picking one of the bottles and placing it on a shelf, until there is no bottle left.

End-to-end trained from scratch with only 10 human demo

***Table: Core challenges of each task**

Mug-on-a-hanger	Bowls-on-dishes	Bottles-on-a-shelf
Accurate 6-DoF inference	Sequential problem	Multimodal distribution
Unseen object pose	Scene-level understanding	Variable object number
Unseen object instance	Color-critical	Unseen object instance

Real Hardware Experiment Outline

