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SE(3)-Equivariant Robotic Manipulation

Benefits of SE(3)-equivariance in Robot Learning

• Data-efficient (Only 5~10 demonstrations are enough)

• Generalizable (Previously unseen poses, instances, distractors)

𝑂𝑠: Scene Point Cloud

𝑂𝑒: Grasp Point Cloud
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Theory: Bi-equivariant Diffusion Process on SE(3)

𝑃𝑡|0(𝑔𝑡|𝑔0, 𝑂𝑠 , 𝑂𝑒):   Diffusion Kernel

𝑃𝑡 𝑔𝑡|𝑂𝑠 , 𝑂𝑒 :   Noised Marginal Distribution

𝑃0(𝑔0|𝑂𝑠 , 𝑂𝑒):   Target Distribution

𝑃𝑡 𝑔𝑡|𝑂𝑠, 𝑂𝑒 = ∫ 𝑑𝑔0 𝑃𝑡|0 𝑔𝑡|𝑔0, 𝑂𝑠, 𝑂𝑒 𝑃0 𝑔0|𝑂𝑠, 𝑂𝑒

𝑔𝑡 ∈ 𝑆𝐸(3):   Diffused Pose

𝑔0 ∈ 𝑆𝐸(3):   Target Pose 

Bi-equivariance of Probability Distribution Function (PDF) on SE(3)

𝑃 𝑔|𝑂𝑠, 𝑂𝑒 = 𝑃 Δ𝑔 𝑔 Δ𝑔 ⋅ 𝑂𝑠, 𝑂𝑒 = 𝑃 𝑔 Δ𝑔−1 𝑂𝑠, Δ𝑔 ⋅ 𝑂𝑒  ∀𝑔, Δ𝑔 ∈ 𝑆𝐸(3)

Core Equation: Bi-equivariance of SE(3) Score Functions

If 𝑃 𝑔|𝑂𝑠 , 𝑂𝑒  is bi-equivariant, the following hold for 𝒔 𝑔 𝑂𝑠 , 𝑂𝑒 = ∇𝑆𝐸(3) log 𝑃(𝑔|𝑂𝑠 , 𝑂𝑒)

1. Left Invariance: 𝒔 Δ𝑔 𝑔|Δ𝑔 ⋅ 𝑂𝑠 , 𝑂𝑒 = 𝒔 𝑔 𝑂𝑠 , 𝑂𝑒

2. Right Equivariance: 𝒔 𝑔 Δ𝑔−1|𝑂𝑠 , Δ𝑔 ⋅ 𝑂𝑒 = AdΔ𝑔
−𝑇

𝒔 𝑔|𝑂𝑠 , 𝑂𝑒
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𝒔 𝑔 𝑂𝑠 , 𝑂𝑒 = ∇𝑆𝐸(3) log 𝑃(𝑔|𝑂𝑠, 𝑂𝑒) :   Score Function of 𝑃

∇ = ∇ℝ3  , ∇𝑆𝑂 3

∇𝐺  = ℒ1, ℒ2, ⋯ , ℒdim(𝐺)  : Lie-derivatives of group 𝐺

ℒ𝑖: Lie-derivative along 𝑖-th Lie algebra of 𝐺

Method: Bi-equivariant Score-based Model on SE(3)

∇𝑆𝐸(3) log 𝑃𝑡 𝑔|𝑂𝑠 , 𝑂𝑒 = 𝒔𝑡 𝑔 𝑂𝑠 , 𝑂𝑒 =
𝒔𝜈;𝑡 𝑔|𝑂𝑠, 𝑂𝑒

𝒔𝜔;𝑡 𝑔|𝑂𝑠 , 𝑂𝑒

Translational gradient

Rotational gradient

𝒔𝜔;𝑡 𝑔 𝑂𝑠 , 𝑂𝑒 = න
ℝ3

𝑑3𝒙  𝜌 𝒙|𝑂𝑒 ෤𝒔𝜔;𝑡 𝑔, 𝒙|𝑂𝑠 , 𝑂𝑒

 + න
ℝ3

𝑑3𝒙  𝜌 𝒙|𝑂𝑒  𝒙 ∧ ෤𝒔𝜈;𝑡 𝑔, 𝒙|𝑂𝑠 , 𝑂𝑒

Spin Term

Orbital Term

𝒔𝜈;𝑡 𝑔 𝑂𝑠 , 𝑂𝑒 = න
ℝ3

𝑑3𝒙  𝜌 𝒙|𝑂𝑒 ෤𝒔𝜈;𝑡 𝑔, 𝒙|𝑂𝑠 , 𝑂𝑒

Cross Product

𝜌(𝒙|𝑂𝑒):   Invariant 

Local Weight Field

෤𝒔𝜔;𝑡 𝑔, 𝒙|𝑂𝑠, 𝑂𝑒 : Equivariant

Local 𝑆𝑂(3) Gradient Field

෤𝒔𝜈;𝑡 𝑔, 𝒙|𝑂𝑠, 𝑂𝑒 : Equivariant

Local ℝ3 Gradient Field

Aggregate into 

Gripper Frame

Denoised 

Pose 𝑔𝑡−1

Diffused 

Pose 𝑔𝑡

𝑂𝑠: Placement Target (Nail)

Locally equivariant terms at 𝒙 ∈ ℝ𝟑 are aggregated 

into globally 𝑺𝑬(𝟑)-adjoint equivariant gradient.

𝒔𝑡 𝑔𝑡|𝑂𝑠, 𝑂𝑒 : Bi-equivariant

Global Score Function on 𝑆𝐸(3)

𝑂𝑒: Observation of  Grasp 

(Gripper holding hammer)

*Remark: A Purely translational term 

at the local regions could result in a 

global rotational effect at the gripper 

frame through the orbital term.

Simulation Benchmark Results

Model Architecture

• We use 𝑆𝐸(3)-steerable neural fields to implement 

bi-equivariant score model for □ = 𝜔, 𝜈

෤𝒔□;𝑡 𝑔, 𝒙|𝑂𝑠, 𝑂𝑒 = 𝝍□;𝑡 𝒙|𝑂𝑒 ⊗□;𝑡
→ 1

𝐃 𝑅−1 𝝋□;𝑡 𝑔𝒙|𝑂𝑠

• A multiscale architecture based on 𝑆𝐸 3 -equivariant 

GNNs are used to encode point cloud observations.

Steerability:  𝝋 Δ𝑔 𝒙 Δ𝑔 ⋅ 𝑂 = 𝐃 Δ𝑅 𝝋 𝒙 𝑂  ∀Δ𝑔 = Δ𝒑, Δ𝑅 ∈ 𝑆𝐸 3

𝐃(𝑅): Block-diagonal of Real Wigner D-matrices;     ⊗(→1): Row-rank Clebsch-Gordon Tensor Product to a Spin-1 Tensor 

Bi-equivariant Diffusion via Contact-based Origin Selection

• There is no bi-invariant kernel on 𝑆𝐸(3) such that 𝑃𝑡|0 𝑔𝑡 𝑔𝑜 = 𝑃𝑡|0 Δ𝑔𝑔𝑡 Δ𝑔𝑔𝑜 = 𝑃𝑡|0 𝑔𝑡Δ𝑔 𝑔𝑜Δ𝑔  ∀ Δ𝑔

• Therefore, 𝑃𝑡|0 must have input dependency; it should depend on either 𝑂𝑠 or 𝑂𝑔

• We achieve bi-equivariance by diffusing with Brownian noise but in an equivariantly sampled diffusion origin.

Right-equivariance: gripper compensates 

the transformation of the grasp

Left-equivariance: gripper follows the 

transformation of the placement target

𝑔: Gripper 
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Δ𝑔

𝑂𝑠

Δ𝑔 ⋅ 𝑂𝑠

𝑔

Δ𝑔
Δ𝑔 ⋅ 𝑂𝑒

Δ𝑔 𝑔 𝑔 Δ𝑔−1

𝑂𝑒

Real Robot Experiments
We evaluate Diffusion-EDFs on three real-world scenarios:

1. Picking a mug and placing on a hanger.

2. Picking up bowls and placing on the dish with the 

matching color, in red-green-blue order.

3. Picking one of the bottles and placing it on a shelf, until 

there is no bottle left.

End-to-end trained from scratch with only 10 human demo.

*Table: Core challenges of each task

Real Hardware Experiment Outline
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