

Motivation

Explicit World vs Neural Field World. 3D Neural Fields are functions defined at all spatial coordinates, parameterized by a neural network such as a Multi-Layer Perceptron (MLP), used to represent the 3D world around us. Various types of 3D neural fields have been explored, such as the signed/unsigned distance field (SDF/UDF), the occupancy field (OF), and the radiance field (RF). They have several advantages over discrete representations such as voxels, mesh, or point clouds: • they provide a continuous representation of the world; • they encode a 3D geometry at arbitrary resolution while using a finite number of parameters (the weights of the MLP). 3D neural fields may become one of the standard methods for storing and communicating 3D information; thus, developing strategies to solve tasks such as classification or segmentation by directly processing neural fields is relevant as well.

Hybrid neural fields combine continuous neural elements (i.e., MLPs) with discrete spatial structures (e.g., voxel grids) that encode local information for faster inference, better use of network capacity and suitability for editing tasks. This paper shows that the discrete features encode rich semantic and geometric information, which can be processed by applying well-established architectures. Moreover, we note how similar information is stored in tri-planes with different initializations of the same shape. Yet, the information is organized with different channel orders. For

Neural Processing of Tri-Plane Hybrid Neural Fields

Adriano Cardace¹, Pierluigi Zama Ramirez¹, Francesco Ballerini¹ Allan Zhou², Samuele Salti¹, Luigi Di Stefano¹

¹University of Bologna, Department of Computer Science and Engineering ²Stanford University

Tri-Plane Reconstruction Quality

			Mesh f	from SDF	Point C
Method	Type	# Params (K) \downarrow	CD (mm) ↓	F-score (%) \uparrow	CD (mm)
inr2vec	Single	800	0.26	69.7	0.2 0.2
Tri-plane	Single	64	0.18	68.6	
Tri-plane	Shared	64	1.57	42.9	3.4
DeepSDF	Shared	2400	6.6	25.1	5.
Functa	Shared	7091	2.85	21.3	12.

Mesh and point cloud reconstruction results on the Manifold40 test set. "Single" and "Shared" indicate neural fields trained on each shape independently or on the whole dataset.

Reconstruction comparison for Manifold40 meshes obtained from SDF

Reconstruction comparison for ModelNet40 point clouds obtained from UDF

Architecture for Tri-Plane Processing

Neural Field Classification

				UDF		SDF	OF	RF
Method	Type	Input	ModelNet40) ShapeNet10	ScanNet10	Manifold40	ShapeNet10	ShapeNetRender
DeepSDF	Shared	Latent vecto	r 41.2	76.9	51.2	64.9	_	
Functa	Shared	Modulation	87.3	83.4	56.4	85.9	36.3	_
inr2vec	Single	MLP	10.6	42.0	40.9	13.1	38.6	_
MLP	Single	MLP	3.7	28.8	36.7	4.2	29.6	22.0
NFN	Single	MLP	9.0	9.0	45.3	4.1	33.8	87.0
NFT	Single	MLP	6.9	6.9	45.3	4.1	33.8	85.3
DWSNet	Single	MLP	56.3	78.4	62.2	47.9	79.1	83.1
Ours	Single	Tri-plane	87.0	94.1	69.1	86.8	91.8	92.6
est set ac	curacy	for shape	e classificat	tion across	neural fie	elds. We co	mpare seve	eral framewor
			capable	of processi	no neural	fields		
				or processi	ing neurai			
Method	Inpu	it M	odelNet40	ShapeNet10	ScanNet10	Manifold40	ShapeNet10	ShapeNetRend
Method Ours	Inpu Tri-p	it M plane	odelNet40 S 87.0	ShapeNet10 94.1	ScanNet10 69.1	Manifold40 86.8	ShapeNet10 91.8	ShapeNetRend 92.6
Method Ours PointNet	Inpu Tri-p Poin	it M plane it Cloud	odelNet40 \$ 87.0 88.8	ShapeNet10 94.1 94.3	ScanNet10 69.1 72.7	Manifold40 86.8	ShapeNet10 91.8	ShapeNetRend 92.6
Method Ours PointNet MeshWalke	Inpu Tri-p Poin er Mes	it M plane it Cloud h	odelNet40 \$ 87.0 88.8 -	ShapeNet10 94.1 94.3	ScanNet10 69.1 72.7	Manifold40 86.8 90.0	ShapeNet10 91.8	ShapeNetRend 92.6
Method Ours PointNet MeshWalke Conv3DNe	Inpu Tri-p Poin er Mes t Voxe	it M plane it Cloud h el	odelNet40 \$ 87.0 88.8	ShapeNet10 94.1 94.3	ScanNet10 69.1 72.7	Manifold40 86.8 90.0	ShapeNet10 91.8 - 92.1	ShapeNetRend 92.6

Comparison with explicit representations. Top: Test set accuracy of our neural field processing method. **Bottom:** Standard networks trained and tested on explicit representations.

Neural Field 3D Part Segmentation

	Method	Input	instance mloU	class mloU	airplane	bag	cap	car	chair	earphone	guitar	knife	lamp	laptop	motor	mug	pistol	rocket	skateboard	table
	inr2vec Ours	MLP Tri-plane	64.2 84.2	64.5 81.3	57.9 83.0	72.9 80.2	67.8 87.4	56.4 76.6	67.6 90.2	48.4 68.2	81.6 91.6	70.6 85.9	55.5 82.1	88.8 95.0	51.5 70.7	87.2 94.4	64.7 81.9	40.1 59.0	58.4 73.4	62.5 80.9
	PointNet	Point Cloud	83.1	78.96	81.3	76.9	79.6	71.4	89.4	67.0	91.2	80.5	80.0	95.1	66.3	91.3	80.6	57.8	73.6	81.5
	PointNet++	Point Cloud	84.9	82.73	82.2	88.8	84.0	76.0	90.4	80.6	91.8	84.9	84.4	94.9	72.2	94.7	81.3	61.1	74.1	82.3
	DGCNN	Point Cloud	83.6	80.86	80.7	84.3	82.8	74.8	89.0	81.2	90.1	86.4	84.0	95.4	59.3	92.8	77.8	62.5	71.6	81.1
Part segmentation re	esults. To	op: Impli	cit fi	ramev	work	s . B	otto	m: N	/leth	ods o	on ex	plici	it rep	orese	ntati	on.]	In b c	old, ł	pest 1	esu]

			UDF		SDF	OF					SDF	
Aethod	Input	ModelNe	40 ShapeNet10	ScanNet10	Manifold40	ShapeNet10			Met	nod Input	Manifold40	
ILP NN ointNet	Tri-plane Tri-plane Tri-plane	41.6 82.2 85.8	84.2 92.1 93.4	55.8 63.4 69.3	40.2 82.5 85.6	79.1 88.4 91.5			ML NFN NF7	MLP (Tri-plane)MLP (Tri-plane)MLP (Tri-plane)	4.3 4.1 4.1	
patial PointNet ransformer	Tri-plane Tri-plane	32.3 87.0	65.4 94.1	51.3 69.1	37.0 86.8	54.7 91.8			1nr2 Our	wec MLP (Tri-plane) Tri-plane	7.4 86.8	
Ablation	study	of arch	itectures fo	or tri-pla	ne neura	al field	Clas	sification of	of MLPs of	of tri-plane ne	ural fields (on the Mani
Ablation	study	of arch	itectures for lassification	or tri-pla n	ne neura	al field	Clas	sification (test	of MLPs of set. Neura	of tri-plane ne al fields were ra	ural fields (andomly ini	on the Mani tialized.
Ablation	study	of arch	itectures for lassification SDF	or tri-pla n Mes	sh from <i>SDF</i>	al field	Clas	sification of test	of MLPs of set. Neura	of tri-plane ne al fields were ra SDF	ural fields (andomly ini Mesh	on the Mani tialized. from <i>SDF</i>
Ablation	study	of arch	itectures for lassification SDF Classification	or tri-pla n Mes Rec	sh from <i>SDF</i> construction	al field	Clas	Resolution	of MLPs of set. Neura	of tri-plane ne al fields were ra <i>SDF</i> Accuracy (%)↑	ural fields (andomly ini Mesh i CD (mm)↓	on the Mani tialized. from <i>SDF</i> F-score (%)↑
Ablation	study	of arch	itectures for lassificatio SDF Classification Accuracy (%) ↑	or tri-pla n Mes Rec CD (mm)	sh from <i>SDF</i> construction \downarrow F-score	al field $(\%) \uparrow$	Clas	$\frac{1}{32 \times 32}$	of MLPs of set. Neura Channels	of tri-plane ne al fields were ra <i>SDF</i> Accuracy (%) ↑ 86.3	ural fields (andomly initial Mesh to CD (mm) \downarrow 0.18	on the Mani tialized. from <i>SDF</i> F-score (%)↑ 68.6
Ablation Method Tri-plane	study	of arch C Type Shared	itectures for lassification SDF Classification Accuracy (%) ↑ 84.7	or tri-pla n Mes Rec CD (mm) 1.57	sh from <i>SDF</i> construction \downarrow F-score 42.	al field (%) \uparrow .9	Clas	sification (test)Resolution 32×32 32×32	of MLPs of set. Neura Channels 32 16	of tri-plane ne al fields were ra <i>SDF</i> Accuracy (%) ↑ 86.3 86.8	ural fields (andomly initial Mesh to $CD (mm) \downarrow$ 0.18 0.18	on the Mani tialized. from <i>SDF</i> F-score (%) ↑ 68.6 68.8
Ablation Method Tri-plane Tri-plane	study e (Ours)	of arch G Type Shared Single	itectures for lassification SDF Classification Accuracy (%)↑ 84.7 86.8	or tri-pla n Mes Rec CD (mm) 1.57 0.18	sh from <i>SDF</i> construction \downarrow F-score 42. 68.	al field .9 .6	Clas	$\begin{array}{c} \textbf{sification of test}\\ \textbf{Resolution}\\ 32 \times 32\\ 32 \times 32\\ 32 \times 32 \end{array}$	of MLPs of set. Neura Channels 32 16 8	of tri-plane ne al fields were ra <i>SDF</i> Accuracy (%) ↑ 86.3 86.8 86.4	ural fields (andomly initial Mesh to $CD (mm) \downarrow$ 0.18 0.18 0.18	on the Mani tialized. from <i>SDF</i> F-score (%) ↑ 68.6 68.8 69.2
Ablation Method Tri-plane Tri-plane Shared vs	study (Ours) individ	of arch Type Shared Single dual M	itectures for lassificatio SDF Classification Accuracy (%)↑ 84.7 86.8 LP. Compa	or tri-pla n Mes Rec CD (mm) 1.57 0.18 rison of c	sh from <i>SDF</i> construction \downarrow F-score 42. 68. classifica	al field $(\%) \uparrow$.9 .6 tion and	Clas	$\begin{array}{c} \textbf{Sification of test} \\ \textbf{Resolution} \\ 32 \times 32 \\ 32 \times 32 \\ 32 \times 32 \\ 32 \times 32 \\ 24 \times 24 \end{array}$	of MLPs of set. Neura Channels 32 16 8 16	of tri-plane ne 1 fields were ra <i>SDF</i> Accuracy (%) ↑ 86.3 86.8 86.4 86.4 86.6	ural fields (andomly initial Mesh to $Mesh toCD (mm) \downarrow$ 0.18 0.18 0.18 0.18	on the Manif tialized. from <i>SDF</i> F-score (%) ↑ 68.6 68.8 69.2 68.9

			UDF		SDF	OF					SDF	
Method	Input	ModelNe	40 ShapeNet10	ScanNet10	Manifold40	ShapeNet10			Me	hod Input	Manifold40	
/ILP	Tri-plane	41.6	84.2	55.8	40.2	79.1			ML	P MLP (Tri-plane)	4.3	
CNN	Tri-plane	82.2	92.1	63.4	82.5	88.4			NF	MLP (Tri-plane)	4.1	
ointNet	Tri-plane	85.8	93.4	69.3	85.6	91.5			NF"	MLP (Tri-plane)	4.1	
Spatial PointNet	Tri-plane	32.3	65.4	51.3	37.0	54.7				vec MLP (In-plane)	/.4	
ransformer	Tri-plane	87.0	94.1	69.1	86.8	91.8			Our	s Tri-plane	86.8	
			-	-								
Ablation	study	of arch	itectures fo	or tri-pla	ne neur	al field	Clas	ssification of	of MLPs	of tri-plane ne	ural fields o	on the Mani
Ablation	study	of arch	itectures for lassification	or tri-pla n	ne neur	al field	Clas	ssification of test	of MLPs of set. Neur	o f tri-plane ne al fields were ra	ural fields of andomly init	on the Manif tialized.
Ablation	study	of arch	itectures for lassification SDF	or tri-pla n Mes	sh from <i>SDF</i>	al field	Clas	ssification of test	of MLPs set. Neur	of tri-plane ne al fields were ra <i>SDF</i>	ural fields (andomly ini Mesh 1	on the Manif tialized. from <i>SDF</i>
Ablation	study	of arch	itectures for lassification SDF Classification	or tri-pla n Mes Rec	sh from <i>SDF</i> construction	al field	Clas	Resolution	of MLPs of set. Neural Channels	of tri-plane ne al fields were ra <i>SDF</i> Accuracy (%)↑	ural fields (andomly ini [*] Mesh f CD (mm)↓	on the Manit tialized. from <i>SDF</i> F-score (%)↑
Ablation	study	of arch	itectures for lassification SDF Classification Accuracy (%)↑	n Mes CD (mm)	sh from <i>SDF</i> construction \downarrow F-score	al field $(\%) \uparrow$	Clas	Solution Resolution 32×32	of MLPs set. Neur Channels 32	of tri-plane ne al fields were ra <i>SDF</i> Accuracy (%) ↑ 86.3	ural fields (andomly ini Mesh f CD (mm)↓ 0.18	on the Mani tialized. from <i>SDF</i> F-score (%) ↑ 68.6
Ablation Method Tri-plane	study	of arch	itectures for lassification SDF Classification Accuracy (%) ↑ 84.7	n Mes CD (mm) 1.57	sh from <i>SDF</i> construction \downarrow F-score 42.	al field $(\%) \uparrow$.9	Clas	sification (test)Resolution 32×32 32×32	of MLPs set. Neur Channels 32 16	of tri-plane ne al fields were ra <i>SDF</i> Accuracy (%) ↑ 86.3 86.8	ural fields (andomly ini Mesh f CD (mm)↓ 0.18 0.18	on the Manit tialized. from <i>SDF</i> F-score (%) ↑ 68.6 68.8
Ablation Method Tri-plane Tri-plane	study e (Ours)	of arch	itectures for lassification SDF Classification Accuracy (%)↑ 84.7 86.8	or tri-pla n Mes Rec CD (mm) 1.57 0.18	sh from <i>SDF</i> construction \downarrow F-score 42. 68.	al field (%)↑ .9 .6	Clas	SolutionResolution 32×32 32×32 32×32 32×32	of MLPs set. Neura Channels 32 16 8	of tri-plane ne al fields were ra <i>SDF</i> Accuracy (%) ↑ 86.3 86.8 86.4	ural fields (andomly initial Mesh for $Mesh for for the second state of the second s$	on the Manif tialized. from <i>SDF</i> F-score (%)↑ 68.6 68.8 69.2
Ablation Method Tri-plane Tri-plane	study (Ours) individ	of arch Type Shared Single dual M	itectures for lassification SDF Classification Accuracy (%)↑ 84.7 86.8 LP. Compa	or tri-pla n Mes Rec CD (mm) 1.57 0.18 rison of c	sh from <i>SDF</i> construction \downarrow F-score 42. 68. classifica	al field $(\%) \uparrow$.9 .6 tion and	Clas	SolutionResolution 32×32	of MLPs set. Neura Channels 32 16 8 16	of tri-plane ne al fields were ra <i>SDF</i> Accuracy (%) ↑ 86.3 86.8 86.4 86.4 86.4	ural fields (andomly initial Mesh f $CD (mm) \downarrow$ 0.18 0.18 0.18 0.18	on the Manif tialized. from SDF F -score (%) \uparrow 68.6 68.8 69.2 68.9

re ea the Manifold40 test set.

 \rightarrow Class logits for tri-plane

We process tri-planes with a Transformer encoder without positional encoding, which is equivariant to token positions. As each token represents a channel of a plane, our architecture computes representations equivariant to the order of the channels. We unroll each channel of size $H \times W$, to obtain a token of dimension HW within a sequence of length 3C tokens. These tokens are then linearly projected and fed into the Transformer. The output of the encoder is once again a sequence of 3C tokens. The output sequence is subjected to a max pool operator for global tasks like classification to obtain a global embedding that characterizes the input shape. The way the tokens are defined, the absence of positional encoding, and the final max pool operator allow for achieving invariance to the channel order. We also utilize the decoder part of Transformers for dense tasks like part segmentation. Specifically, we treat the coordinates queries to segment as a sequence of input tokens to the decoder. Each point p with coordinates (x, y, z) undergoes positional encoding and is then projected to a higher-dimensional space using a linear layer. By leveraging the crossattention mechanisms within the decoder, each input token representing a query point can globally attend to the most relevant parts of the tri-planes processed by the encoder to produce its logits.

accuracy on Manifold40.

Its among frameworks processing neural fields.

Second row is our choice. Results on the Manifold40 test set.