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Motivation
Explicit World vs Neural Field World. 3D Neural Fields are functions defined at all spatial
coordinates, parameterized by a neural network such as a Multi-Layer Perceptron (MLP), used to
represent the 3D world around us. Various types of 3D neural fields have been explored, such as
the signed/unsigned distance field (SDF/UDF), the occupancy field (OF), and the radiance field
(RF). They have several advantages over discrete representations such as voxels, mesh, or point
clouds: • they provide a continuous representation of the world; • they encode a 3D geometry at
arbitrary resolution while using a finite number of parameters (the weights of the MLP).
3D neural fields may become one of the standard methods for storing and communicating 3D
information; thus, developing strategies to solve tasks such as classification or segmentation by
directly processing neural fields is relevant as well.
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Hybrid neural fields combine continuous neural elements (i.e., MLPs) with discrete spatial struc-
tures (e.g., voxel grids) that encode local information for faster inference, better use of network
capacity and suitability for editing tasks. This paper shows that the discrete features encode rich
semantic and geometric information, which can be processed by applying well-established archi-
tectures. Moreover, we note how similar information is stored in tri-planes with different initial-
izations of the same shape. Yet, the information is organized with different channel orders. For
this reason, we propose to employ architectures invariant to the channel order, and we are able to
improve performance in the challenging but more realistic scenario of randomly initialized neural
fields. Indeed, we almost close the gap between methods that operate on explicit representations
and those working directly on neural representations.
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A special case of hybrid neural fields is parameterized by a discrete tri-plane feature map, T , and
a small MLP network, M . T consists of three orthogonal 2D feature maps, T = (Fxy,Fxz,Fyz),
with Fxy,Fxz,Fyz ∈ RC×H×W , where C is the number of channels and W,H are the spatial
dimensions of the feature maps. The feature vector associated with a 3D point, p, is computed by
projecting the point onto the three orthogonal planes so to get the 2D coordinates, pxy , pxz , and
pyz , relative to each plane. Then, the four feature vectors corresponding to the nearest neighbours
in each plane are bi-linearly interpolated to calculate three feature vectors, fxy , fxz , and fyz , which
are summed up element-wise to obtain f = fxy + fxz + fyz , f ∈ RC . Finally, we concatenate f
with a positional encoding, PE, of the 3D point p and feed it to the MLP, which in turn outputs
the field value at p: q̂ = Φ(p; θ) = M([f ,PE]).

+ + =

interp

interp

interp

Observations

3D world

SDF/UDF/OF

RF

Tri-plane dataset

~

Learning tri-planes. To learn a field, we optimize a (T,M) pair for each
3D object, starting from randomly initialized parameters, θ, for both M
and T . We sample N points pi and feed them to T and M to compute the
corresponding field quantities q̂i = Φ(pi; θ). Then, we optimize θ with a
loss, L, capturing the discrepancy between the predicted fields q̂i and the
ground truth yi, applying an optional mapping between the output and the
available supervision if needed. We repeat this process for each 3D shape
of a dataset, thereby creating a dataset of tri-plane hybrid neural fields.

Tri-Plane Reconstruction Quality
Mesh from SDF Point Cloud from UDF

Method Type # Params (K) ↓ CD (mm) ↓ F-score (%) ↑ CD (mm) ↓ F-score (%) ↑
inr2vec Single 800 0.26 69.7 0.21 65.5
Tri-plane Single 64 0.18 68.6 0.24 60.7

Tri-plane Shared 64 1.57 42.9 3.45 33.3
DeepSDF Shared 2400 6.6 25.1 5.6 5.7
Functa Shared 7091 2.85 21.3 12.8 5.8

Mesh and point cloud reconstruction results on the Manifold40 test set. “Single” and
“Shared” indicate neural fields trained on each shape independently or on the whole dataset.
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Reconstruction comparison for Manifold40
meshes obtained from SDF
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Reconstruction comparison for ModelNet40
point clouds obtained from UDF
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We render a view of the reconstructed 3D
object alongside the corresponding tri-plane
feature map for three different hybrid neural
fields. These visualizations show clearly that
the tri-plane spatial structure learns the ob-
ject shape, i.e., it contains information about
its geometry. For this reason, when tackling
tasks such as classification and segmentation,
we discard the MLPs and process only the tri-
plane structure of the neural fields.

Tri-Plane Random Initialization
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Reconstructions of different combinations
of (tri-plane,MLP) pairs with different inits
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Architecture for Tri-Plane Processing

Transformer
Encoder

FC

FC

FC

FC

sh
ar

ed

flatten

Classification

Segmentation

FC

m
ax

 p
oo

l

Class logits
for tri-plane

Tr
an

sf
or

m
er

De
co

de
r

Class logits
for 

FC~

class embedding

We process tri-planes with a Transformer encoder without positional en-
coding, which is equivariant to token positions. As each token represents a
channel of a plane, our architecture computes representations equivariant
to the order of the channels. We unroll each channel of size H × W , to
obtain a token of dimension HW within a sequence of length 3C tokens.
These tokens are then linearly projected and fed into the Transformer. The
output of the encoder is once again a sequence of 3C tokens. The output
sequence is subjected to a max pool operator for global tasks like classi-
fication to obtain a global embedding that characterizes the input shape.
The way the tokens are defined, the absence of positional encoding, and
the final max pool operator allow for achieving invariance to the channel
order. We also utilize the decoder part of Transformers for dense tasks
like part segmentation. Specifically, we treat the coordinates queries to
segment as a sequence of input tokens to the decoder. Each point p with
coordinates (x, y, z) undergoes positional encoding and is then projected
to a higher-dimensional space using a linear layer. By leveraging the cross-
attention mechanisms within the decoder, each input token representing a
query point can globally attend to the most relevant parts of the tri-planes
processed by the encoder to produce its logits.

Neural Field Classification
UDF SDF OF RF

Method Type Input ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10 ShapeNetRender

DeepSDF Shared Latent vector 41.2 76.9 51.2 64.9 – –
Functa Shared Modulation 87.3 83.4 56.4 85.9 36.3 –

inr2vec Single MLP 10.6 42.0 40.9 13.1 38.6 –
MLP Single MLP 3.7 28.8 36.7 4.2 29.6 22.0
NFN Single MLP 9.0 9.0 45.3 4.1 33.8 87.0
NFT Single MLP 6.9 6.9 45.3 4.1 33.8 85.3
DWSNet Single MLP 56.3 78.4 62.2 47.9 79.1 83.1
Ours Single Tri-plane 87.0 94.1 69.1 86.8 91.8 92.6

Test set accuracy for shape classification across neural fields. We compare several frameworks
capable of processing neural fields.
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Method Input ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10 ShapeNetRender

Ours Tri-plane 87.0 94.1 69.1 86.8 91.8 92.6

PointNet Point Cloud 88.8 94.3 72.7 – – –
MeshWalker Mesh – – – 90.0 – –
Conv3DNet Voxel – – – – 92.1 –
ResNet50 Images – – – – – 94.0

Comparison with explicit representations. Top: Test set accuracy of our neural field processing
method. Bottom: Standard networks trained and tested on explicit representations.

Train Test

UDF SDF OF UDF SDF OF

✓ 84.7 78.4 15.6
✓ 67.3 86.8 11.9

✓ 49.3 46.9 77.7
✓ ✓ ✓ 87.4 87.8 80.3

Universal tri-plane classifier. Test set
accuracy on Manifold40.

Neural Field 3D Part Segmentation
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inr2vec MLP 64.2 64.5 57.9 72.9 67.8 56.4 67.6 48.4 81.6 70.6 55.5 88.8 51.5 87.2 64.7 40.1 58.4 62.5
Ours Tri-plane 84.2 81.3 83.0 80.2 87.4 76.6 90.2 68.2 91.6 85.9 82.1 95.0 70.7 94.4 81.9 59.0 73.4 80.9

PointNet Point Cloud 83.1 78.96 81.3 76.9 79.6 71.4 89.4 67.0 91.2 80.5 80.0 95.1 66.3 91.3 80.6 57.8 73.6 81.5
PointNet++ Point Cloud 84.9 82.73 82.2 88.8 84.0 76.0 90.4 80.6 91.8 84.9 84.4 94.9 72.2 94.7 81.3 61.1 74.1 82.3
DGCNN Point Cloud 83.6 80.86 80.7 84.3 82.8 74.8 89.0 81.2 90.1 86.4 84.0 95.4 59.3 92.8 77.8 62.5 71.6 81.1

Part segmentation results. Top: Implicit frameworks. Bottom: Methods on explicit representation. In bold, best results among frameworks
processing neural fields.

Ablation Studies
UDF SDF OF

Method Input ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10

MLP Tri-plane 41.6 84.2 55.8 40.2 79.1
CNN Tri-plane 82.2 92.1 63.4 82.5 88.4
PointNet Tri-plane 85.8 93.4 69.3 85.6 91.5
Spatial PointNet Tri-plane 32.3 65.4 51.3 37.0 54.7
Transformer Tri-plane 87.0 94.1 69.1 86.8 91.8

Ablation study of architectures for tri-plane neural field
classification

SDF

Method Input Manifold40

MLP MLP (Tri-plane) 4.3
NFN MLP (Tri-plane) 4.1
NFT MLP (Tri-plane) 4.1
inr2vec MLP (Tri-plane) 7.4

Ours Tri-plane 86.8

Classification of MLPs of tri-plane neural fields on the Manifold40
test set. Neural fields were randomly initialized.

SDF Mesh from SDF

Classification Reconstruction

Method Type Accuracy (%) ↑ CD (mm) ↓ F-score (%) ↑
Tri-plane Shared 84.7 1.57 42.9
Tri-plane (Ours) Single 86.8 0.18 68.6

Shared vs individual MLP. Comparison of classification and
reconstruction results of tri-planes sharing all the same MLP vs when
each tri-plane has its own individual MLP. Results were computed on

the Manifold40 test set.

SDF Mesh from SDF

Resolution Channels Accuracy (%) ↑ CD (mm) ↓ F-score (%) ↑
32× 32 32 86.3 0.18 68.6
32× 32 16 86.8 0.18 68.8
32× 32 8 86.4 0.18 69.2
24× 24 16 86.6 0.18 68.9
40× 40 16 86.4 0.18 69.0

Ablation study of tri-plane resolution and number of channels.
Second row is our choice. Results on the Manifold40 test set.


