

MOTIVATION

Despite their notable performance on tasks like classification and segmentation, ViTs are **not** shift equivariant.

Figure 1: Effect of input shifts on ViT-based classifiers.

Goal: Design ViT modules that guarantee circular shift equivariance and enhance standard shift consistency.

- Circularly shift equivariant by construction.
- Generalizable across hierarchical ViT architectures.
- End-to-end trainable.

Prior Work:

• Pre-align circularly shifted images based on their polyphase representation before extracting patches.

INTRODUCTION

Modules on traditional ViTs are not shift equivariant.

• These include: patch tokenization/merging, relative position embedding and self-attention.

Result: ViT backbones break shift equivariance.

Figure 2: ViT architectures such as Swin are equipped with modules (highlighted in red) that break shift equivariance.

A-WSA aligns tokens via a **shift-invariant se**lection criterion G to choose the window partition with the highest energy, producing a shift-equivariant representation.

Adaptive Relative Position Embedding. To consider the periodicity induced by circular shifts, A-RPE leverages a circular relative position matrix $E^{(\text{rel})} \in \mathbb{R}^{M \times M}$.

MAKING VISION TRANSFORMERS TRULY SHIFT-EQUIVARIANT

Renan A. Rojas-Gomez¹ Teck-Yian Lim¹ Minh N. Do^{1,2} Raymond A. Yeh³ ²VinUni-Illinois Smart Health Center, UIUC ¹Department of Electrical and Computer Engineering, UIUC ³Department of Computer Science, Purdue University

PROPOSED APPROACH

Adaptive Tokenization.

A-token generates patches adaptively by maximizing a shift-invariant selection criterion *F*, producing the same tokens despite circularly shifted inputs.

Figure 3: Original tokenization.

Adaptive Window-based Self-Attention.

Figure 5: Original Window-based Self-Attention.

$$j] = \boldsymbol{B}\left[(p_i^{(Q)} - p_j^{(K)}) \bmod M \right]$$

• $B \in \mathbb{R}^{(2M-1)}$: Position embeddings. • $p^{(Q)}, p^{(K)}$: Queries and keys indices.

A-token $(oldsymbol{x}) = oldsymbol{X}^{(m^{\star})}oldsymbol{E} \in \mathbb{R}^{rac{N}{L} imes D}, \; m^{\star}$

- $X^{(m)} = \operatorname{reshape}(\mathcal{S}_N^m x) \in \mathbb{R}^{rac{N}{L} imes L}$: Patch representation of
- the input $x \in \mathbb{R}^N$ after circularly shifting it by *m* samples.
- $\boldsymbol{E} \in \mathbb{R}^{L \times D}$: Patch projection.

Figure 4: Proposed tokenization A-token.

 $extsf{A-WSA}(oldsymbol{T}) = extsf{WSA}(oldsymbol{\mathcal{S}}_M^{m^\star}oldsymbol{T}) \in \mathbb{R}^{M imes D'}$

• $v_W^{(m)}[k] = \frac{1}{W} \sum_{l=0}^{W-1} \| (S_M^m T)_{(Wk+l) \mod M} \|_p$: Energy of the k-th window resulting from circularly shifting the input tokens $T \in \mathbb{R}^{M \times D}$ by m indices.

Figure 6: Proposed Window-based Self-Attention A–WSA.

$$= \underset{0 \le m \le L-1}{\operatorname{arg\,max}} F(\boldsymbol{X}^{(m)}\boldsymbol{E}).$$

$$m^{\star} = \underset{0 \le m \le W-1}{\operatorname{arg\,max}} G(\boldsymbol{v}_{W}^{(m)}).$$

. Image Classification

Method	Circular Shift		Standard Shift	
	Top-1 Acc.	C-Cons.	Top-1 Acc.	S-Cons.
Swin-T	90.15	83.30	90.11	86.35
A-Swin-T (Ours)	93.39	99.99	93.50	96.00
SwinV2-T	89.08	89.16	89.08	91.68
A-SwinV2-T (Ours)	91.64	99.99	91.91	95.81
CvT-13	90.06	75.80	90.05	84.66
A-CvT-13 (Ours)	93.87	100	93.71	96.47
MViTv2-T	96.00	86.55	96.14	91.34
A-MViTv2-T (Ours)	96.41	100	96.61	98.36

Table 1: CIFAR-10 classification results. Top-1 accuracy and shift consistency (%) under circular and standard shifts. Bold numbers indicate improvement over the baseline architectures.

Method	Circular Shift		Standard Shift	
	Top-1 Acc.	C-Cons.	Top-1 Acc.	S-Cons.
Swin-T	78.5	86.68	81.18	92.41
A-Swin-T (Ours)	79.35	99.98	81.6	93.24
SwinV2-T	78.95	87.68	81.76	93.24
A-SwinV2-T (Ours)	79.91	99.98	82.10	94.04
CvT-13	77.01	86.87	81.59	92.80
A-CvT-13 (Ours)	77.05	100	81.48	93.41
MViTv2-T	77.36	90.03	82.21	93.88
A-MViTv2-T (Ours)	77.46	100	82.4	94.08

Table 2: ImageNet classification results. Top-1 accuracy and shift consistency (%) under circular and standard shifts. Bold numbers indicate improvement over the baseline architectures.

2. Consistency of Tokens to Input Shifts

Figure 9: Consistent token representations. Small input shifts Figure 10: Semantic Segmentation under standard shifts. lead to large deviations (non-zero errors) in the token repre- Segmentation results on ADE20K using our A-SwinV2 as backsentations when using default ViTs (e.g., CvT-13). In contrast, bone. Our adaptive model improves both segmentation accuour proposed data-adaptive models (e.g., A-CvT-13) achieve an racy and shift consistency. Examples of prediction changes due to input shifts are boxed in yellow. absolute zero-error across all transformer blocks.

RESULTS

3. Ablation Study

Configuration	Top-1 Acc.	C-Cons.
A-Swin-T (Ours)	$93.39 \pm .13$	100
No A-token	$93.66 \pm .19$	$96.29 \pm .20$
No A-WSA	$93.24 \pm .15$	$95.62 \pm .54$
No A-PMerge	$91.67 \pm .10$	$94.62 \pm .11$
Swin-T (Default)	$90.15 \pm .18$	$83.30 \pm .61$

Table 3: Ablation study. Effect of our adaptive ViT modules on classification accuracy and shift consistency (%). Configurations progressively evaluated on Swin-T under circular shifts.

Semantic Segmentation

Backbone	Circular Shift mIoU mASCC		Standard Shift mIoU mASSC	
Swin-T	42.93	87.32	44.2	93.37
A-Swin-T (Ours)	43.44	100	44.43	93.48
SwinV2-T	43.86	88.16	44.26	93.23
A-SwinV2-T (Ours)	44.42	100	46.11	93.59

Table 4: Semantic segmentation performance. Segmentation accuracy and shift consistency (%) of our adaptive UperNet model equipped with A-SwinV2 backbones.

