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MOTIVATION
Despite their notable performance on tasks like classifi-
cation and segmentation, ViTs are not shift equivariant.

Figure 1: Effect of input shifts on ViT-based classifiers.

Goal: Design ViT modules that guarantee circular shift
equivariance and enhance standard shift consistency.
• Circularly shift equivariant by construction.
• Generalizable across hierarchical ViT architectures.
• End-to-end trainable.

Prior Work:
• Pre-align circularly shifted images based on their

polyphase representation before extracting patches.

INTRODUCTION
Modules on traditional ViTs are not shift equivariant.
• These include: patch tokenization/merging, relative

position embedding and self-attention.
Result: ViT backbones break shift equivariance.

Figure 2: ViT architectures such as Swin are equipped with
modules (highlighted in red) that break shift equivariance.

PROPOSED APPROACH
1. Adaptive Tokenization.

A-token generates patches adaptively by
maximizing a shift-invariant selection cri-
terion F , producing the same tokens de-
spite circularly shifted inputs.

A-token(x) =X(m⋆)E ∈ R
N
L ×D, m⋆ = argmax

0≤m≤L−1
F (X(m)E).

• X(m) = reshape(Sm
N x) ∈ RN

L ×L: Patch representation of
the input x ∈ RN after circularly shifting it by m samples.

• E ∈ RL×D: Patch projection.

Figure 3: Original tokenization. Figure 4: Proposed tokenization A-token.

2. Adaptive Window-based Self-Attention.

A-WSA aligns tokens via a shift-invariant se-
lection criterion G to choose the window
partition with the highest energy, produc-
ing a shift-equivariant representation.

A-WSA(T ) = WSA
(
Sm⋆

M T
)
∈ RM×D′

, m⋆ = argmax
0≤m≤W−1

G
(
v
(m)
W

)
.

• v
(m)
W [k] = 1

W

∑W−1
l=0 ∥(Sm

MT )(Wk+l) mod M∥p: Energy of the
k-th window resulting from circularly shifting the input
tokens T ∈ RM×D by m indices.

Figure 5: Original Window-based Self-Attention. Figure 6: Proposed Window-based Self-Attention A-WSA.

3. Adaptive Relative Position Embedding.
To consider the periodicity induced by
circular shifts, A-RPE leverages a circular
relative position matrix E(rel) ∈ RM×M .

E(rel)[i, j] =B
[
(p

(Q)
i − p

(K)
j ) modM

]
.

• B ∈ R(2M−1): Position embeddings.
• p(Q), p(K): Queries and keys indices. Figure 7: Original relative distance. Figure 8: Proposed relative distance.

RESULTS
1. Image Classification

Method Circular Shift Standard Shift
Top-1 Acc. C-Cons. Top-1 Acc. S-Cons.

Swin-T 90.15 83.30 90.11 86.35
A-Swin-T (Ours) 93.39 99.99 93.50 96.00

SwinV2-T 89.08 89.16 89.08 91.68
A-SwinV2-T (Ours) 91.64 99.99 91.91 95.81

CvT-13 90.06 75.80 90.05 84.66
A-CvT-13 (Ours) 93.87 100 93.71 96.47

MViTv2-T 96.00 86.55 96.14 91.34
A-MViTv2-T (Ours) 96.41 100 96.61 98.36

Table 1: CIFAR-10 classification results. Top-1 accuracy and
shift consistency (%) under circular and standard shifts. Bold
numbers indicate improvement over the baseline architectures.

Method Circular Shift Standard Shift
Top-1 Acc. C-Cons. Top-1 Acc. S-Cons.

Swin-T 78.5 86.68 81.18 92.41
A-Swin-T (Ours) 79.35 99.98 81.6 93.24

SwinV2-T 78.95 87.68 81.76 93.24
A-SwinV2-T (Ours) 79.91 99.98 82.10 94.04

CvT-13 77.01 86.87 81.59 92.80
A-CvT-13 (Ours) 77.05 100 81.48 93.41

MViTv2-T 77.36 90.03 82.21 93.88
A-MViTv2-T (Ours) 77.46 100 82.4 94.08

Table 2: ImageNet classification results. Top-1 accuracy and
shift consistency (%) under circular and standard shifts. Bold
numbers indicate improvement over the baseline architectures.

2. Consistency of Tokens to Input Shifts

Circular Shift Block 1 (56× 56) Block 2 (28× 28) Block 3 (14× 14)

Figure 9: Consistent token representations. Small input shifts
lead to large deviations (non-zero errors) in the token repre-
sentations when using default ViTs (e.g., CvT-13). In contrast,
our proposed data-adaptive models (e.g., A-CvT-13) achieve an
absolute zero-error across all transformer blocks.

3. Ablation Study

Configuration Top-1 Acc. C-Cons.

A-Swin-T (Ours) 93.39± .13 100
No A-token 93.66± .19 96.29± .20

No A-WSA 93.24± .15 95.62± .54
No A-PMerge 91.67± .10 94.62± .11

Swin-T (Default) 90.15± .18 83.30± .61

Table 3: Ablation study. Effect of our adaptive ViT modules on
classification accuracy and shift consistency (%). Configura-
tions progressively evaluated on Swin-T under circular shifts.

4. Semantic Segmentation

Backbone Circular Shift Standard Shift
mIoU mASCC mIoU mASSC

Swin-T 42.93 87.32 44.2 93.37
A-Swin-T (Ours) 43.44 100 44.43 93.48

SwinV2-T 43.86 88.16 44.26 93.23
A-SwinV2-T (Ours) 44.42 100 46.11 93.59

Table 4: Semantic segmentation performance. Segmentation
accuracy and shift consistency (%) of our adaptive UperNet
model equipped with A-SwinV2 backbones.

Original and Shifted Inputs SwinV2 + UperNet A-SwinV2 + UperNet (Ours)

Figure 10: Semantic Segmentation under standard shifts.
Segmentation results on ADE20K using our A-SwinV2 as back-
bone. Our adaptive model improves both segmentation accu-
racy and shift consistency. Examples of prediction changes due
to input shifts are boxed in yellow.


