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ABSTRACT
Point cloud registration is a crucial challenge in
the field of 3D reconstruction to ensure 3D align-
ment consistency. Despite the existence of vari-
ous point cloud-based registration methods, both
non-learning and learning-based, the utilization
of surfels as geometry representation primitive,
including both position and orientation, along
with the associated uncertainty remains insuffi-
ciently explored. The point cloud based meth-
ods ignore the data uncertainty, and learn both
rotation and translation implicitly from the point
coordinates, leading to a reliance on dense train-
ing point clouds. To address these issues, we
propose a novel surfel-based deep pose regres-
sion approach. Our method initializes surfels
from depth map based on the specific depth
camera projection model. Subsequently, the
model learns both position and rotation represen-
tations through the SE(3)-equivariant convolu-
tional kernel for the relative transformation be-
tween paired frames. The model primarily con-
sists of an equivariant convolutional encoder, a
cross-attention mechanism for similarity compu-
tation, a fully-connected layer based decoder, and
a non-linear Huber loss.

SURFEL INIT

Figure 1: In surfel init stage, the input is the depth map.
Initially, we calculate the gradient of the depth map us-
ing the Sobel operator to derive the normal map, as il-
lustrated in the middle. Subsequently, the downsam-
pled depth map is transformed into a point cloud uti-
lizing the camera projection. The point position corre-
sponds to the center of a disk, the normal determines
the orientation of the disk, and the disk radius repre-
sents the uncertainty.
The disk radius (standard deviation) is defined as
below,
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MODEL STRUCTURE

Figure 2: The network structure includes a shared en-
coder for surfels (split into 6 plus the uncertainty ra-
dius) from both the source and target frames in the
SE(3) space. This encoder maps the 1024 surfels with
6 dimensions (position and normal) after weighting by
confidence value (1−ϵ(·)) into 128-dimensional features
across 12 channels, and then each descriptor along the
channel dimension undergoes linear embedding to pro-
duce triplet token embeddings, denoted as Q, K, and
V. The cross-attention gθ(·) is applied to feature de-
scriptors from the source and the target frame. The re-
sulting latent tokens are then combined to create a 2D
feature map with dimensions (12 × 12) × 128, as spec-
ified within the brackets following the cross-attention
module. This feature map is later flattened into 1D and
passed through Fully-Connected (FC) layers. These lay-
ers map the features into the relative position and the
relative rotation in quaternion.

Figure 3: Recovering discretized SO(3)′ from the quo-
tient feature S2′ by permutation order of points on Pla-
tonic solids of 12 corners.

Figure 4: f(·), g(·) indicate network model and group
rotation respectively.

Equvariant features of rotations and positions are
learnt separately in two branches.

EXPERIMENT RESULTS

Figure 5: Comparisons on 3DMatch datasets. Yellow in-
dicated the scan of source frame, while blue depicts the
scan of target frame. The top three models with good
performance are presented visually.

Figure 6: Huber loss learning curve under different
thresholds.
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CONCLUSION
In summary, the main contribution of this work
can be briefly outlined as follows:

• Surfel initialized from the depth map is de-
vised to generate the input for the pose re-
gression model.

• A specialized deep learning model based on
surfels is implemented to learn equivariant
features using rotation-equivariant convo-
lution.

• The differentiable Huber loss function is
employed to explicitly leveraging the soft
correspondence supervision of point pair
candidates.

We present a complete surfel-based network
model in conjunction with a surfel initializa-
tion method. Additionally, the camera view-
based uncertainty initialization approach is de-
vised. Our model consists of a shared E2PN
encoder to learn equivariant features from the
surfel of the source and target frames, a cross-
attention module to establish feature correspon-
dences, and the MLP-based decoder. Through
the extensive comparison experiments and the
ablation study on real 3D indoor scan datasets,
we exhibit the model’s robustness, good accu-
racy performance compared to the state-of-the-art
models. However, despite the good performance
on our selected scenes, the model may still have
some limitations when the sampling points’ den-
sity varies a lot spatially, different from the sam-
pling from the uniform density distribution in 3D
space. Lastly, the 2D gaussian surfel primitive can
be explored further in the future for many other
3D tasks, like 3D mapping or 3D reconstruction.
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